The directed path partition conjecture
نویسندگان
چکیده
The Directed Path Partition Conjecture is the following: If D is a digraph that contains no path with more than λ vertices then, for every pair (a, b) of positive integers with λ = a + b, there exists a vertex partition (A, B) of D such that no path in D〈A〉 has more than a vertices and no path in D〈B〉 has more than b vertices.We develop methods for finding the desired partitions for various classes of digraphs.
منابع مشابه
On the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملThe Path Partition Conjecture is true in generalizations of tournaments
The Path Partition Conjecture for digraphs states that for every digraph D, and every choice of positive integers λ1, λ2 such that λ1 + λ2 equals the order of a longest directed path in D, there exists a partition of D in two subdigraphs D1,D2 such that the order of the longest path in Di is at most λi for i = 1, 2. We present sufficient conditions for a digraph to satisfy the Path Partition Co...
متن کاملA New Proof of Berge’s Strong Path Partition Conjecture for Acyclic Digraphs
Berge’s elegant strong path partition conjecture from 1982 extends the Greene-Kleitman Theorem and Dilworth’s Theorem for all digraphs. The conjecture is known to be true for all digraphs for k = 1 by the Gallai-Milgram Theorem, and for k > 1 only for acyclic digraphs. We present a simple algorithmic proof for k = 1 which naturally extends to a new algorithmic proof for acyclic digraphs for all...
متن کاملLongest path partitions in generalizations of tournaments
We consider the so-called Path Partition Conjecture for digraphs which states that for every digraph, D, and every choice of positive integers, λ1, λ2, such that λ1 + λ2 equals the order of a longest directed path in D, there exists a partition of D into two digraphs, D1 and D2, such that the order of a longest path in Di is at most λi, for i = 1, 2. We prove that certain classes of digraphs, w...
متن کاملThe Path Partition Conjecture for Oriented Graphs
The vertex set and arc set of a digraph D are denoted by V (D) and E (D), respectively, and the number of vertices in a digraph D is denoted by n (D). A directed cycle (path, walk) in a digraph will simply be called a cycle (path, walk). A graph or digraph is called hamiltonian if it contains a cycle that visits every vertex, traceable if it contains a path that visits every vertex, and walkabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 25 شماره
صفحات -
تاریخ انتشار 2005